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TECHNICAL NOTE k237

GENERAL INSTABILITY OF STIFFENED CYLINDERS

By Herbert Becker
SUMMARY

Theoretical buckling stresses are determined in explicit form for
circular cylinders with clrcumferential and sxlel stiffening. The
loadings are axial compression, radial pressure, hydrostatlic pressure,
and torsion. Analyses were confined to moderste-length and long cylin-
ders., The investligation was based upon the use of s form of Donnell's
equation derived by Taylor which is gpplicable to orthotropic cylinders.
The derivation of thls equation is presented in this report.

INTRODUCTION

General instsbllity in stiffened ecircular cylinders has been inves-
tigated for several cases of loading and types of stiffening. Analyses
were performed utlilizing energy methods, the three differentlal equations
for orthotropic cylinders of Flligge (ref. 1), and various forms of
Donnell's equastion (ref. 2) spplicable to orthotropic cylinders.

Except for the snalyses by Dschou (ref. 3) and Taylor (ref. 4),
these investigatlons have not ylelded expliclt solutions for buckling
stress. TFurthermore, the analyses for externsl-pressure loadings have
been confined to ring-stiffened cylinders. In the present report,
explicit expressions are presented for exisl-compression, external-
pressure, and torsional loadings on moderate-length and long cylinders
with both axisl and circumferential stiffening.

The axial-load solution is that developed by Taylor, who utilized
the simplificstions employed by Donnell, together with the effects of
orthotropleilty, and derived an eighth-order partial differential equa-
tion for axisl-compression buckling. In this report, the equation of
Teylor has been extended to include torsional and pressure losdings.
In eddition, Teylor's assumption of a zero value for Polsson's ratio
has been reteined.

The analyses are confined to moderste-length cylinders, for which
the boundary conditlions influence the buckling stress, and to long



2 NACA TN L4237

cylinders, for which there is no boundary influence. Details of bound-
ary conditions for the different loadings are dlscussed in the pertinent
sections below.

The investigation is restricted to elastic buckling. Linesr theory
is used in all caeses. Section properties of the frames, stiffeners, and
sheet are nominal, as depicted in figure 1. The actual properties to
be used in design are discussed in part VI of the Handbook of Structural
Stability (ref. 5). This handbook contains a critical review of the
fleld of general Instebillty. It presents comperisons of theory and test
data which delineste the utility both of the theoreticsl results presented
herein and of other theorles which do not employ the orthotropic-shell
theory.

A summary of the results of the investigatlons appears in table 1.
Short discusslons of the analyses of each case investigated are also
included. The derivatione of the general lnstabilillty stresses are pre-
sented In sppendixes A to D.

This investligation was conducted at New York University under the
sponsorship and with the finencisl assistance of the National Advisory
Committee for Aeronsutics.

SYMBOLS
Ap distributed ares of frame including effective sheet, in., Kf/a
Ae area of freme including effective sheet, sq in.
As distributed aree of stiffener including effective sheet, in., Es/b
RS area of stiffener including effective sheet, sq in.
a constant
b stiffener spacing, in.
a freme spacing, in.
E Young's modulus, psi
F Alry's stress function
G shear modulus, psi
Ie distributed bending moment of inertia of frame, Ip[d, cu in.
Ig distributed bending moment of inertia of stiffener, Igfb, cu in.
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bending moment of inertis of frame including effective sheet, in.h

£

E; bending moment of inertia of stiffener including effective sheet,
in.h

J =Jdp + Jg

Je distributed torsional moment of inertia of frame, 3}/&, cu in.

Js distributed torsional moment of inextis of stiffener, jg/b,
cu in.

3} torsional moment of inertia of stiffener, in.h

Tg torsional moment of inertia of freme, in.*

ky buckling coefficient for unstiffened clrcular cylinder under
lateral pressure

kp buckling coefficient for unstiffened circulsr cylinder under
hydrostatic pressure

L length of cylinder, in.

- 2w

Mx = Elg S;E-

Mgy = -% 5y gg_y

My = EIp ggg
Yy

m,n perameters of sxisl and cirecumferential buckle wave lengths

m = mL/x

Ny axisl normal loed on cylinder, oytg, 1b/in.

Ngy sheer load on cylinder, Tt, 1b/in.

Ny circumferential normal load on cylinder, oyte, 1b/in.
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pressure loadling on cylinder, psil

transverse shears on shell element, 1b

radius of cylinder, in.

torque loadlng on cylinder wall, in.

thickness of cylinder wall, in.

effective thickness of cylinder wall in shear-buckled state
distributed ares of frame, Af/d, in.

distributed area of stiffener, As/b, in.

displacements in x-, y-, and z-directions, in.

deflection constant

axial coordinate, in,
circumferential coordinate, in.

radial coordinate, in.

il
o

parameter for unstiffened cylinder, L?/Rt when v

shear straln

axial normal strain
tangentisl normal strain

half-wave length of buckle in circumferential direction, in.
Polsson's ratio

2 T =
radius of gyration of frame section, pp = If/Af = If/tf, in.

axlal-compressive-buckling stress, psi

axial normsl stress, psi
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Oy circumferentigl-compressive-buckling stress; also, general
circumferential normal stress, psi
T shear-buckling stress; also, genersl shear stress, psi

HISTORICAL BACKGROUND

Early theoretical investigations into the buckling of stiffened
circular shells were performed by Flligge (ref. 1), Dschou (ref. 3), and
Teylor (ref. %). Fligge derived the trio of linear equilibrium equa-
tlons analogous to those for isotropic cylinders which hsve been utilized
by many investigators. Dschou solved these equations for stiffened
circuler cylinders under axial load.

Taylor derived a differentisl equation for axislly loaded ortho-
tropic circular cylinders utilizing the same approsch as did Donnell
in obtaining his well-known elghth-order partial differential for iso-
tropic circular cylinders (ref. 2). The result is a relatively simple
explicit solution for the genersl instability stress which reduces to
the classical result for an isotroplc cylinder. There is a slight die-
crepancy due to Taylor's assumption of a zero value for Poleson's ratio.

Buckling of ring-stiffened circular cylinders under external pres-
sure was investigated by Salerno and Ievine (ref. 6) snd by Kendrick
(ref. 7) by using the energy approach. Kendrick's calculations led to
higher instebility stresses than those obtained by Salerno and Ievine,
who omitted certain terms in the energy equations.

Bodner investigated this case (ref. 8) using an equation of the
Donnell type simllar to that presented in this report in which Poisson's
ratio is included. The complete length range was snslyzed.

Stein, Sanders, snd Crate detexrmined the sectlon properties of ring
stiffeners required to avoid general instability in cylinders loaded in
torsion (ref. 9). Hayashi (ref. 10) analyzed stiffened cylinders in
torsion employing the ldentical approach used by Donnell for isotropic
cylinders. Hsyashli showed that Donnell's results are a limiting case
of the buckling of orthotropic cylinders in torsion. The complete length
range is included in this treatment, and the results are obtained in the
same form as found by Donnell, except for the more general form of the
parsmeters.
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THECRETICAL RESULTS

The theoretical buckling stresses for orthotropic cylinders under
varlious loadings are shown 1n table 1. Derivations of these expressions
are presented in the appendices. Buckling stresses were determined on
the assumption that the spacings of the longitudinal stiffeners and the
circumferentisl frames were small enough to conslder the cylinder to act
as a uniform orthotropic shell. Effects of boundasry conditions on the
general instebillty stresses for the various loadinge are discussed in
the following paragraphs.

Axial Load

The solution chosen by Taylor for the case of axial losding repre-
sents the waveform assumed in the classical solution of simply supported
isotroplc cylinders, in which linear theory is used. It is applicable
to both moderate-length and long cylinders.

External Pressure

The solution for external pressure is ldentical to that for axial
load and was applied by Batdorf to external radial and hydrostatic pres-
sures on simply supported cylinders (ref. 11). For long isotropic cyl-
inders Donnell's equation leads to a buckling stress that is too high,
campared with the results of an exact analysis, by a factor of h/j.
Although the corresponding result is obtainable for orthotropic cylin-
ders by the method presented in this report, Ievy's result for radially
loaded ringe (ref. 12) has been presented instead since it corresponds
to the exsct solution.

The analysis is simplified for external-pressure losdings by assuming
that the ratio of axisl to circumferential wave length of the buckle is
negligibly small compared with unity. This simplification is Justifisble
for moderate-length cylinders. Furthermore, the explicit result agrees
with Bodner's data for ring-stiffened cylinders in this length range.

Torslon

The solutions and simplifications applied to stiffened cylinders
loaded in torsion were employed by Gerard and Becker for moderate-length
isotropic cylinders (ref. 13). The long-cylinder solution does not sat-
isfy boundary conditions, although 1t spparently is a satisfactory repre-
sentation of the buckle waveform for isotropic cylinders. However, in
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this length range s satisfactory solution to the problem may be obbtained
although boundary conditions are not satisfied for isotropic cylinders.
The same situation was assumed to apply to stiffened cylinders.

The moderate-length solution satisfies the requirement that w =0
on the boundaries bubt does not correspond to vanishing moments at these
locatlions. However, the buckling stress for an isotropic moderate-length
cylinder in torsion is relatively insensitlve to specifications on these
latter quantities, since there is less than 10-percent difference between
the theoretical buckling stresses for simply supported and clamped edges.

The gerersal Ilnstgbility behavior of orthotropic cylinders is con-
sldered to parallel the buckling behgvior of moderate-length and long
isctropic circuler shells. Consequently, the same solution to the buck-
ling equation and the same simplifications in the masthematics are assumed
to be applicable. The mathematics was simplified by assuming that the
ratio of clrcumferential to axial wave length was negligible compsred
with unity.

College of Engineering,
New York Unlversity, New York, N. Y.,
April 10, 1956.
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APPENDIX A
DERIVATION OF DIFFERENTIAL EQUATION

The derivetlon of Taylor's differential equation in which the
effects of shear and circumferentisl normal stress are slso included is
presented below. The geometric properties of a stiffened cylinder are
portrayed schematically in figure 1.

Taylor derived the equilibrium equation for an orthotropic cylinder
by cambining the compatibllity equation for forces in the plane of a
plate element with that for equilibrium of forces normsl to a plate ele-
ment with initial curvature in one direction. These two situations are
depicted in figure 2.

For equilibrium in the "plane" of the element
2

My , My
ox oy

(1)

fl
O

ON. + BNW
Sy ox
and for equilibrium normal to the element

P Oy ey oy 3% N<1 52"')+p=o (2)

o axay+ay2 +Nxax2+2N}q--——-axay+_yR+-é;-2—

in which R%." §-21"- 15 the sum of the curvatures in the y-direction due

to the initlal shape of the shell and to the deformation under load.

It is reasonable to assume that Poisson's ratio vanishes for a
stiffened cylinder febricated in the usual menmer of sirecraft construc-
tion, in which case Hooke's lew and the stress-strain displacement
relations assume the forms
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L -

i} B - 8 €x ax (38-)

.Yy ¥,
E Bty Y- 3 TR (3b)

T o Ny,
G ¢t 7 oy T X (3¢)
My = EIg % . (34)

ox
. 2w
- 51y (3e)
1 2w
My =-5GJ T (32)
From equations (3a), (3b), and (3c), the compatibility relation
Fep Py 2y 1%
+ - ?-% == == (%)
Bya e x R %
follows, which is equivalent to
1 M, 1 3w, My 1 32
e R L U L. - (5)
Etg 9y2 ~ Ebr 3x2 GE ox dy R ax2
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If the Airy stress function F 1is introduced

32
NX:Sy_EE
_ d°F §
N, = 5 (6)
°F
Ny =- 3
p
then equation (5) becomes
adtr, 1w a1 (7)
Bty dxt = OF 3x23y2 Etg oyF R ox2

- This is the compatlbllity equation for forces in the plane of the
element. The equilibrium equation for forces normal to the plane of
the element may be obtained from equation (2) by writing the term

2w

LB 1
Y 532
oy

oy2 R ax2

N &

and utilizing equations (3d), (3e),.and (3f) which yield

Sy
ayt

Pw

dx2

2w

N s o <

N ==
¥ aye +P R

M | gy D

ET
® ot 3x2dy

2

(8)

The function F may easily be eliminated from equations (7) and (8),
which will lead to the relstion

3%

dx2
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4 L y A b L
} e gCAp - - LA S | E - M« - LA - LN
te axll- Gt ax23y2 tg ay axll- E ax23y2 Ly
2 2 2 L .
e S v oy, &, &)+ L&w g (9)
<x3x2 ¥ 3x oy ay2 R2 ax

if it is assumed that p 1s constant. For an isotropic cylinder this
will reduce to Donnell's equation for v = O.
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APPENDIX B
GENERAL INSTABILITY UNDER AXTAL COMPRESSION
Taylor utilized, as the solution to equation (9),

W = Wy, sin mx sin ny (10)

for the snelysis of axlal compressive buckling of an orthotropic circular
cylinder. For this case

Ny = Oytg
> (11)
Ny = Ny, = O

Upon solving for oy and minimizing with respect to m and n,

1/2
om | B2Ip + (GI/2E)

= 12
" T Ris|(2/v0)+ (m/20%) 12

and

1/4
1/m = M2 [IB + B2(GI/E) + B“If]{(ljtf) + <52E/GT:> + (a“/tsﬂ (13)

where

8% = n¥fm® = p 4+ (% + Q)l/a (14)
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where

_ % f tpls - tglp
2tp t:sxf - (cta/%?)

t| 6T, - (62E/E2)

* tele1, - (cPE3/ER)

)
|

The half-wave lengths are =/m and =n/n in the longitudinal and
circumferential directions, respectively.

When tg =ty =% =t and Is=1f=t3/12, then B2 =1 and
equetion {12) becomes

6o = (3)"28e/R (15)

which is the classicsl equation for buckling of a long cilrcular iso-
tropic cylinder under axisl load when Poisson's ratio is zero. When
v = 0.3, the error is 4.6 percent.
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APPENDIX C
GENERAL INSTABILITY UNDER EXTERNAL PRESSURE

For external-pressure loading, equation (9) becomes

" ) " " ) "
(ia _ETB_I_LQ__)IB_FGJB_‘_B

— —_— = Ip — +
te 3 65 3x23y2  tg oy Pyd E ax23y2 oyt
if, 22 32 1 M _
E(Nx a—x-é + Ny ayz)} R?- —;I 0 (16)
For uniform radial pressure, Nx = Nxy =0, and
_l_ a)-l- + —— E a)+ _J;. i IB ..ai_ +
te o | OF ox20y2 | ts OyF) \ ° o
G _ % o L pR®\y, 1
LA £ + B2 S (w)y + = =0 (18)
E ol ot B oy 2
W = Wy, 8in mx sin ny (19)

equation (18) becomes

2,2
(Eli+f][—n-_—ri-+-rﬁ><lsml"+%m2n2+1fnh-pR—n—2->+ni)+-=o (20)

tg  GE tg
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and consequently the pressure is found in the form

BRo2 b, O3 20, ook, mt (21)
E E Ra ﬁ + _Ehﬁ + n_LI-

or, with B = n/m, the expression for the pressure becomes

-1

R _ofls G 2 2)(B2 . E g, B0
- m<52+E+IfB)+ (Rzm)<tf+G’EB +_b‘5 . (22)

Moderate-length Cylinder Under Radial Pressure

The critical pressure for a moderate-length cylinder under radial
pressure is obtalned by minimization of pR, since R i1s constant.

From géﬁal = 0,

Is @ 2—1/lL (g2, E k& 5-1/4
m=(5§+f+1fs) (R)<%+E§3 +%)
or
hl/h
i=(R)l/a(ls+%62+Ifﬁh)(%+§§£+%) (23)

which 1s the same as for an axially compressed orthotropic circular
cylinder. When equation (23) is substituted into equation (22), it is
found that

1/2
GJ .2 4

T o
oF /B+E BT + IeB

P = (24)
(Rs)e\i,,g B2 4+ g

te Gt tg

This is equal to cc/ba, and becomes 0, when B = 1.
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Actuslly m = ELE end n = x/A where N\ is the half-wave length
in the circumferentisl direction. Then equation (22) becomes

-1

2 2 6
PR _ (ax\(le &I 2 2(%)&2.&23_
= = <L) [32+ = + I8 ) + |R ) |t +G’6 B +ts (25)

For the minimum integral value of a in the solution of equa-
tion (25), & = 1. Then with B >> 1 (where B = L/\), which assumes
that the axiasl wave length is much larger than the circumferentisel wave

length,
-1

- (35 (5 (=)
B

This is obtained by neglecting terms of lowest order in B. Then
fr(xn _a_gBR_._)_ = O,

OB
1/4
g2 = L{2e (27)
"\R%1,
and thus
3 1/4
b I
PR _ 1(51/4 . 3-3/4) Eele” (28)
E L R2
_IR
Since Oy = E, then
5 /4
E ts:[f
O'y- = 5-51 f (29)
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or

s 1/h
s
o HEEE o)

For isotropic cylinders,

SRUREE

or

2(%) (31)

Using the notation
kyrtaE'b2

) 12(1 - v2)L2

2
Then with 2z = 1%_:, equation (31) reduces to

ky = 1.0352,M/2 (32)

(note that v = 0) which checks figure 1 of Batdorf's report (ref. 1l),
in which

ky = 1.0392;1/2 (33)

for Zy, > 100. This result can be obtained anslytically. From Batdorf's
report, for radial pressure on an isotropic cylinder,
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o - (g2 4 g2) . 122, % (54
B2 xkp2(m2 + p2)°
where m = mn/L. For hydrostatic pressure,
(z2 ef 107, 25
kp = S — - (35)
m 2 =2 2/ 2
E+p (i +ﬁ)(—é-+s)
When # =1 and B2 >>1,
o 1222 (36
ky = kp = B2 + B 3
y = kp s )
Minimization of equation (36) leads to equation (33).
Moderate-length Cylinder Under Hydroststic Pressure
For the moderste-~length orthotropic cylinder under hydrostatic
pressure, equation (25) becomes
2 L
EE(E- + n2) = Igmt + & m2n2 & Tenh + z (37)
E\2 E g2fmt , EPn2 ol
e Gt 'bs
or
nh
PR (2, 1 2< G 2 4) 22l ,E 2, B
2 pe + =) =mflIg + = B+ I + |R = 4+ = B= + £
- (B 2) s+ 3 B £B % T Gt B s (38)

When P2 >> 1, the results of hydrostatic and redial p
equal, and equation (30) will apply.

ressgure are
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Iong Cylinder Under Radlal Pressure

For a long cylinder under radial pressure, the buckling mode corre-
sponds to thet of a ring, for which Levy obtained the result

p= BEIf/R3 (39)
With
oy = & (k0)

it follows, from equations (39) and (40), that

o, = 3E(pf/R)2 (41)
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APPENDIX D
BUCKLING OF CIRCULAR CYLINDERS UNDER TCORSION

Moderate-length Cylinders

For shear loading of moderate-length circular cylinders

Nyy = t7 = T/2nR® (L2)

Nx-‘-'N)]':o

As was shown by Becker and Gerard for isotropic cylinders of moderate
length, a useful solution for T, 1s obtained when the expression

= orx oo X, oy
W sin( T+ R) sin Fm + 2) o R] (43)

is used in equation (9). This satisfies w = O at the cylinder ends,

although Ow/dx and azw/axz are not prescribed. Such freedom from
boundary conditlons is indicated for isotropic cylinders by the small
difference (less than 10 percent) between the buckling stresses for
clamped and simply supported cylinders of moderate length.

Equation (43) is adapted here for orthotropic cylinders. When it
is substituted into equation (9) , with the additionsal stipulations that

- 2
(mR/nL)® << 1 end [_(m + 2)nR/nL] << 1, then it is found that

or _ |_Llp 3 tefur\ lut + (m + 2)k
-E_;r- - [im + l)n}(l%) * ;%(:TL) Eﬂ Q-Em I-: I) ()

The minimum value of 7T is found from

2E)-29) -
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which yields

- (1;3 )3/8@% )5/8(%)1/2 . (15)

This agrees with the data of Stein, Sanders, end Crate for ring-stiffened
cylinders in torsion (ref. 8), at large values of Z7. It reduces to the

isotropic solution for v = O:

I- o.731(*0/12)5/4(1@1/1.)J‘/2 (46)

=

The result of equation (46) is 5.7 percent lower than the exact isotropic
solution obtained by Batdorf for v = 0.313.
Long Cylinders
For torsion on a long cylinder the classical solution for the iso-

tropic case is

W = Wgn sin<E§§ + %g) (&7)

When this is substituted into equation (9) using equations (42), it is
found that

O e 6 % 28 (3" % (0" 3
e 2 @ 5

Since v = 0, then E/G = 2. Furthermore, it is assumed again that
(mrR/nL) << 1. Then equstion (47) becomes
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- @0 o

Upon minimization of T with respect t¢ m and employing n =2 for
the long cylinder, h )

3/4 1/h
e\ (ts
T = 1.754EQ5¥9 (?;) (50)

This reduces to the isotropic result, with v = 0O,

T = 0.272E(t/R)5/2 _ (51)
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TABLE 1

THECRETICAL GENERAL INSTABILITY STRESSES FOR

ORTHOTROPIC CIRCULAR CYLINDERS

Loading Moderaste-length cylinders Long e¢ylinders
i 1/2 1/2
Axial a, . 2B BoLe + (cd/2E) a _ _=E 82T, + (GI/2E)
campression ¢ Rig (Ba/ts) + (B/26%) ¢ Rtg (Ba/ts) + (Ef26%)
e radial . 51E/ts\l/4/2£\3/2rn\ 5 m\2
Ina.l = . — = p
or hydrostatic v ktf) \R) \5) 4 (f/_ )
pressure
3/8/, \5/8, \1f2 1/l \3/%
t t
Torsion T = 3. -_E-\ 1—_\1'.%1- (%) T = 1.7511.}3:(?}3.) :I:g_.
\ I’ \n -Gj = A \.“""GI

83ae equation (14) for value of p&.

®2

Lezt WL VOVN
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N,
oy
N”.dy ady

Figure 2.- Forces acting

on a cylinder element.
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